

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	archer 0.1 documentation

Welcome to Archer

Archer: develop Thrift RPC service the Flask way

Welcome to Archer’s documentation. This documentation is divided into
different parts. I recommend that you get started with
Installation and then head over to the Quickstart.
Besides the quickstart, there is also a more detailed tutorial that
shows how to create a complete (albeit small) application with Archer. If
you’d rather dive into the internals of Archer, check out
the API documentation.

Archer depends on two external libraries: the Thriftpy [https://github.com/eleme/thriftpy/] interpreter
engine and the Click [https://github.com/mitsuhiko/click/] cli parser. These libraries are not documented
here. If you want to dive into their documentation, check out the
following links:

	Thriftpy Documentation [https://thriftpy.readthedocs.org/en/latest]

	Click Documentation [http://click.pocoo.org]

User’s Guide

This part of the documentation, which is mostly prose, begins with some
background information about Archer, then focuses on step-by-step
instructions for web development with Archer.

	foreword
	Why Thrift

	Why Thriftpy

	Installation
	virtualenv

	System-Wide Installation

	Living on the Edge

	Quickstart
	A Minimal Application

	tutorial
	tutorial

	testing
	test client

	fake client

	errorhandling
	register error handler

	event
	event

	Command line tools
	Command Line

	In Code

	client

	Working with the Shell
	Command Line Interface

	deployment
	deployment

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	API
	Application Object

	ApiMeta Object

	ApiResultMeta

	Test Client

	Fake Client

	Command Line Interface

Additional Notes

Design notes, legal information and changelog are here for the interested.

	Design Decisions in Archer
	The Explicit Application Object

	Thread Locals

	What Archer is, What Archer is Not

	changes
	changes

	Version 0.5

	Version 0.1

	Version 0.2

	licence
	licence

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

foreword

Why Thrift

The Apache Thrift software framework, for scalable cross-language services
development, combines a software stack with a code generation engine to build
services that work efficiently and seamlessly between C++, Java, Python, PHP,
Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk, OCaml
and Delphi and other languages.

You just wrie a thrift file:

thrift --gen <language> <Thrift filename>

after compiling for a given language, the corresponding SDK files are generated.

Why Thriftpy

Thriftpy [https://github.com/eleme/thriftpy/] is a Python implementation of Thrift which generates SDK modules
dynamically when some thrift file is loaded, No SDK files any more, making
development procedure more fluently.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

Installation

Archer depends on some external libraries, like Thriftpy [https://github.com/eleme/thriftpy/] and Click [https://github.com/mitsuhiko/click/].
Thriftpy is an Thrift interface definition language interpreter written in
Python which would load a thrift file and generate SDK module on the fly,
saving you the time for compiling the thrift file by hand.

Click is a Python package for creating beautiful command line interfaces
in a composable way with as little code as necessary.

So how do you get all that on your computer quickly? There are many ways you
could do that, but the most kick-ass method is virtualenv, so let’s have a look
at that first.

You will need Python 2.6 or newer to get started, so be sure to have an
up-to-date Python 2.x installation. Python 3.x would also be OK.

virtualenv

Virtualenv is probably what you want to use during development, and if you have
shell access to your production machines, you’ll probably want to use it there,
too.

What problem does virtualenv solve? If you like Python as much as I do,
chances are you want to use it for other projects besides Archer-based RPC
applications. But the more projects you have, the more likely it is that you
will be working with different versions of Python itself, or at least different
versions of Python libraries. Let’s face it: quite often libraries break
backwards compatibility, and it’s unlikely that any serious application will
have zero dependencies. So what do you do if two or more of your projects have
conflicting dependencies?

Virtualenv to the rescue! Virtualenv enables multiple side-by-side
installations of Python, one for each project. It doesn’t actually install
separate copies of Python, but it does provide a clever way to keep different
project environments isolated. Let’s see how virtualenv works.

If you are on Mac OS X or Linux, chances are that one of the following two
commands will work for you:

$ sudo easy_install virtualenv

or even better:

$ sudo pip install virtualenv

One of these will probably install virtualenv on your system. Maybe it’s even
in your package manager. If you use Ubuntu, try:

$ sudo apt-get install python-virtualenv

Once you have virtualenv installed, just fire up a shell and create
your own environment. I usually create a project folder and a venv
folder within:

$ mkdir myproject
$ cd myproject
$ virtualenv venv
New python executable in venv/bin/python
Installing setuptools, pip............done.

Now, whenever you want to work on a project, you only have to activate the
corresponding environment. On OS X and Linux, do the following:

$. venv/bin/activate

If you are a Windows user, the following command is for you:

$ venv\scripts\activate

Either way, you should now be using your virtualenv (notice how the prompt of
your shell has changed to show the active environment).

And if you want to go back to the real world, use the following command:

$ deactivate

After doing this, the prompt of your shell should be as familiar as before.

Now, let’s move on. Enter the following command to get Archer activated in your
virtualenv:

$ pip install Archer

A few seconds later and you are good to go.

System-Wide Installation

This is possible as well, though I do not recommend it. Just run
pip with root privileges:

$ sudo pip install Archer

(On Windows systems, run it in a command-prompt window with administrator
privileges, and leave out sudo.)

Living on the Edge

If you want to work with the latest version of Archer, there are two ways: you
can either let pip pull in the development version, or you can tell
it to operate on a git checkout. Either way, virtualenv is recommended.

Get the git checkout in a new virtualenv and run in development mode:

$ git clone http://github.com/eleme/archer.git
Initialized empty Git repository in ~/dev/archer/.git/
$ cd archer
$ virtualenv venv
New python executable in venv/bin/python
Installing setuptools, pip............done.
$. venv/bin/activate
$ python setup.py develop
...
Finished processing dependencies for Archer

This will pull in the dependencies and activate the git head as the current
version inside the virtualenv. Then all you have to do is run git pull
origin to update to the latest version.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

Quickstart

This page gives a good introduction to Archer. It
assumes you already have Archer installed. If you do not, head over to the
Installation section.

A Minimal Application

A minimal Archer application looks something like this:

from archer import Archer
app = Archer('PingPong')

@app.api('ping')
def ping():
 return 'pong'

provided a hello.thrift file under your working directory,
define a service in the file:

service PingPong {
 string ping(),
}

Note

Archer accepts one parameter, that is the name of the
service defined in the thrift file.

So what did that code do?

	First we imported the Archer class. An instance of this
class will be our Thrift RPC server_side application.

	Next we create an instance of this class. The first argument is the name of
the application

	We then use the api() decorator to tell Archer what name
defined in thrift file should trigger our function.

	The function returns the message for ping RPC call, which is a string pong here

	the service PingPong is defined in the hello.thrift file

Just save the python code as hello.py (or something similar) and the
service definition in hello.thrift, run it with your Python
interpreter. Make sure to not call your application archer.py because this
would conflict with Archer itself.

To run the application you can use the archer command:

$ archer run
* Running on 127.0.0.1:6000 in DEBUG mode

This launches a very simple built_in server, which is good enough for testing
but probably not what you want to use in production. For deployment options see
deployment.

Now run call the remote function you can also use the archer command:

$ archer call ping
* pong

You should see that the string pong is returned

Externally Visible Server

you can make the server publicly available simply by adding
--host=0.0.0.0 to the command line:

archer run --host=0.0.0.0

This tells your operating system to listen on all public IPs.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

tutorial

tutorial

A minimal Archer application looks something like this:

from archer import Archer
app = Archer('PingPong')

@app.api('ping')
def ping():
 return 'pong'

provided a hello.thrift file under your working directory,
define a service in the file:

service PingPong {
 string ping(),
}

So what did that code do?

	First we imported the Archer class. An instance of this
class will be our Thrift RPC server_side application.

	Next we create an instance of this class. The first argument is the name of
the application

	We then use the api() decorator to tell Archer what name
defined in thrift file should trigger our function.

	The function returns the message for ping RPC call, which is a string pong here

	the service PingPong is defined in the hello.thrift file

Just save the python code as hello.py (or something similar) and the
service definition in hello.thrift, run it with your Python
interpreter. Make sure to not call your application archer.py because this
would conflict with Archer itself.

To run the application you can use the archer command:

$ archer run
* Running on 127.0.0.1:6000 in DEBUG mode

This launches a very simple built_in server, which is good enough for testing
but probably not what you want to use in production. For deployment options see
deployment.

Now run call the remote function you can also use the archer command:

$ archer call ping
* pong

You should see that the string pong is returned

You can also run a client shell by:

$ archer client
>>> client.ping()

Externally Visible Server

you can make the server publicly available simply by adding
--host=0.0.0.0 to the command line:

archer run --host=0.0.0.0

This tells your operating system to listen on all public IPs.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

testing

test client

A test client could be initialized by calling test_client()

fake client

A test client could be initialized by calling fake_client()

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

errorhandling

register error handler

Exceptions occurs during an API calling would be caught by the error handlers
registered. if no one is provided, the default handler would catch it.
In Archer,an error handler is registed like:

app.register_error_handler(error, handler)

In which,e is the Exception,f is the error handler,for example:

class BasicException(Exception):
 pass

def BasicErrorHandler(meta, result):
 return 'BasicException'

app.register_error_handler(BasicException, BasicErrorHandler)

The two arguments meta and result refers to ApiMeta and ApiResultMeta.

Whenever a BasicException occurs,Archer will catch it and call BasicErrorHandler to handle it.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

event

event

Event is used to add customized hook functions which would be called
before or after An api calling.

Archer provides 3 events before_api_call, after_api_call,
tear_down_api_call

	for after_api_call,it would take one argument,

	which is an instance of ApiMeta

	it receives two arguments, first is instance of

	ApiMeta and the second is instance of ApiResultMeta.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

Command line tools

	It’s quite easy to fire up a development server by using the archer

	command line utility with Archer.run() method.

Command Line

The archer command line script (Command line tools) is strongly recommended for
development because it provides a superior reload experience due to how it
loads the application. The basic usage is like this:

$ archer --app my_application run

This will enable the reloader and then start the server on
http://localhost:6000/.

If you put your app instance in a python file or a __init__.py file in
some directory under the root_path,
archer will find the app for you automatically. In such cases, just:

$ archer run

And the server would start the same way. Super easy!

In Code

The alternative way to start the application is through the
Archer.run() method. This will immediately launch a local server
exactly the same way the archer script does.

Example:

if __name__ == '__main__':
 app.run()

client

Archer also provide the archer call to easy test a api without
any coding:

$ archer --app my_application call api_name param1,param2....

if you’d like archer find the app for you, just:

$ archer call api_name param1, param2...

And if everything is ok, the terminal would echo the return value
of this api, or just the string OK if nothing is returned.

parameters are just separated by comma or whitespace, so
a b c d and a,b,c,d are both ok.

Archer would handle the parameter type, so 123 would convert to int type.
You can specify the type using : after a parameter, like 123:string,
so that Archer would known that you want 123 to be a string instead of int.

Non built_in type

Customized types are not supported, as call command is just
for quickly getting some feedback of an api, You need more complicated test
cases to ensure your api work correctly, so don’t rely heavily on this
command.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

Working with the Shell

One of the reasons everybody loves Python is the interactive shell. It
basically allows you to execute Python commands in real time and
immediately get results back. Archer itself does not come with an
interactive shell, because it does not require any specific setup upfront,
just import your application and start playing around.

There are however some handy helpers to make playing around in the shell a
more pleasant experience. The main issue with interactive console
sessions is that you’re not really triggering a real rpc call from a client.

This is where some helper functions come in handy. Keep in mind however
that these functions are not only there for interactive shell usage, but
also for unit testing and other situations that require a faked request
context.

Command Line Interface

Thee recommended way to work with the shell is the
archer shell command which does a lot of this automatically for you.
For instance the shell is automatically initialized with a loaded
application context. with globals app, fake_client, test_client
already set at your hand:

>>> thrift_file = app.thrift_file
>>> test_client.ping()
>>> fake_client.ping()

You may want to add some other variables to the global scope of the shell
by using shell_context_processor() method.

For more information see Command line tools.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

deployment

deployment

The development Server is not suitable for production use,
we did not handle the thrift Protocol and Transport details instead of
providing a default one which is suitable for development.

gunicorn_thrift [http://github.com/eleme/gunicorn_thrift] is highly recommended
if you’d like to deploy an Archer application, as Archer is designed to work with
gunicorn_thrift.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

API

This part of the documentation covers all the interfaces of Archer. For
parts where Archer depends on external libraries, we document the most
important right here and provide links to the canonical documentation.

Application Object

ApiMeta Object

ApiResultMeta

Test Client

Fake Client

Command Line Interface

	
archer.cli.call

	

	
archer.cli.shell

	

	
archer.cli.run

	

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

Design Decisions in Archer

If you are curious why Archer does certain things the way it does and not
differently, this section is for you. This should give you an idea about
some of the design decisions that may appear arbitrary and surprising at
first, especially in direct comparison with other frameworks.

The Explicit Application Object

A thrift application based on gunicorn_thrift has to have one central
object that implements the actual application. In Archer this is an
instance of the Archer class. Each Archer application has
to create an instance of this class itself.

That instance is your gunicorn_thrift application, you don’t have to remember anything else. If you
want to apply a gunicorn_thrift middleware, just wrap it and you’re done (though
there are better ways to do that so that you do not lose the reference
to the application object processor()).

Furthermore this design makes it possible to use a factory function to
create the application which is very helpful for unittesting and similar
things

Thread Locals

Unlike Flask, Archer doesn’t use thread local objects, no magic globals
like current_app, request in Flask.
We believe that things you can do with thread locals would exist a
better way to do without it, and decouple your code with these globals
means it would be easier to test and analyse, passing
globals around everywhere seems not a good idea. Try to fire up a python
shell and type import this, one thing you can find is:

"Explicit is better than implicit." --zen of Python

Say if we have an asynchronous server instead, using thread locals
as globals would make no sense and break our application. Any way,
no thread locals leaves the door open.
We throw the ball to the end user to decide whether thread local would
be used in an archer app, for more information , refer to the article GlobalState [https://code.djangoproject.com/wiki/GlobalState].

What Archer is, What Archer is Not

Archer will never have a database layer. It will not have a form library
or anything else in that direction. Archer itself just bridges to gunicorn_thrift
to implement a proper thrift application.
It also binds to a few common standard library packages such as logging.
Everything else is up for extensions.

Archer almost does nothing on the client side , as the client language
is depend on what you prefer, and how to use the connection is also
not predictable. So just implement the client side code the way you like
or just whatever to satisfy your need.

Why is this the case? Because people have different preferences and
requirements and Archer could not meet those if it would force any of this
into the core.

The idea of Archer is to build a good foundation for all thrift applications.
Everything else is up to you.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	archer 0.1 documentation

changes

changes

Archer Changelog

Here you can see the full list of changes between each Archer release.

Version 0.5

	Allow archer to pass module_name to thriftpy #8

Version 0.1

First public preview release.

Version 0.2

Add client tools

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	archer 0.1 documentation

licence

licence

This is the MIT license: http://www.opensource.org/licenses/mit-license.php

Copyright (c) 2014-2014 the Archer authors and contributors .

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	archer 0.1 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 archer	

 	
 	
 archer.cli	

 	
 	
 archer.test	

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	archer 0.1 documentation

Index

 A
 | C
 | R
 | S

A

 	

 	archer (module)

 	archer.cli (module)

 	

 	archer.test (module)

C

 	

 	call (in module archer.cli)

R

 	

 	run (in module archer.cli)

S

 	

 	shell (in module archer.cli)

 Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		archer 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Wang Haowei.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

